论文标题
使用混合整数编程进行分割和降解
Learning Discontinuous Piecewise Affine Fitting Functions using Mixed Integer Programming for Segmentation and Denoising
论文作者
论文摘要
分段仿射函数被广泛用于近似非线性和不连续功能。但是,大多数(如果不是全部)模型仅处理拟合连续功能。在本文中,我们调查了将不连续的分段仿射函数拟合到位于正交网格中的数据的问题,在该数据中,对分区没有限制的限制(即,其几何形状可以是非凸)。当数据与图像相对应时,这对于分割和降解很有用。我们为分段仿射拟合问题提出了一种新型的混合整数程序(MIP)公式,其中二进制变量决定了断裂点的位置。为了获得一致的分区(即图像分割),我们在公式中包括多切割约束。由于结果问题是$ \ MATHCAL {NP} $ - 硬引入了两种技术以改善计算。一种是在配方中添加方面的不平等现象,而另一个则使用特殊的启发式算法提供初始整数溶液。我们通过一些合成图像和实际深度图像进行了广泛的实验,结果证明了我们的模型的可行性。
Piecewise affine functions are widely used to approximate nonlinear and discontinuous functions. However, most, if not all existing models only deal with fitting continuous functions. In this paper, we investigate the problem of fitting a discontinuous piecewise affine function to given data that lie in an orthogonal grid, where no restriction on the partition is enforced (i.e., its geometric shape can be nonconvex). This is useful for segmentation and denoising when data corresponding to images. We propose a novel Mixed Integer Program (MIP) formulation for the piecewise affine fitting problem, where binary variables determine the location of break-points. To obtain consistent partitions (i.e. image segmentation), we include multi-cut constraints in the formulation. Since the resulting problem is $\mathcal{NP}$-hard, two techniques are introduced to improve the computation. One is to add facet-defining inequalities to the formulation and the other to provide initial integer solutions using a special heuristic algorithm. We conduct extensive experiments by some synthetic images as well as real depth images, and the results demonstrate the feasibility of our model.