论文标题

图形的签名边缘支配数字上的上限

Upper bounds on the signed edge domination number of a graph

论文作者

Dong, Fengming, Ge, Jun, Yang, Yan

论文摘要

简单图的签名边缘支配函数(或sedf)$ g =(v,e)$是函数$ f:e \ rightArrow \ {1,-1,-1 \} $,以至于$ \ sum_ {e'\ in n [e]} f(e]} f(e]} f(e'} f(e') $ e $。令$γ_s'(g)$表示所有SEDFS $ f $中$ f(g)$的最小值,其中$ f(g)= \ sum_ {e \ in E} f(e)$。在2005年,Xu undionentuent of une $γ_s'(g)\ le n-1 $,其中$ n $ n $ n $是$ g $ $ g $。在两种情况下,已证明了这一猜想$ v_ {odd}(g)= 0 $和$ v_ {偶}(g)= 0 $,其中$ v_ {odd}(g)$(sesp。$ v_ {evev}(evev}(g)$)是$ g $中的奇数(dect。本文证明了$ v_ {偶}(g)\ in \ {1,2 \} $的Xu的猜想。我们还表明,对于任何简单的图形$ g $,$ n $的$ g $,$γ_s'(g)\ le n+n+v_ {odd}(g)/2 $和$γ_s'(g)\ le n-2+v_ {evev_ {evev} $ n时$ v_ {v_ {v_ {vev}(g)> 0 $ 0 $,以及$γ_s'($γ_s'(g)'(g)'(g)'(4)。我们的结果改善了$​​γ_s'(g)\ le \ lceil 3n/2 \ rceil $的最佳当前上限。

A signed edge domination function (or SEDF) of a simple graph $G=(V,E)$ is a function $f: E\rightarrow \{1,-1\}$ such that $\sum_{e'\in N[e]}f(e')\ge 1$ holds for each edge $e\in E$, where $N[e]$ is the set of edges in $G$ that share at least one endpoint with $e$. Let $γ_s'(G)$ denote the minimum value of $f(G)$ among all SEDFs $f$, where $f(G)=\sum_{e\in E}f(e)$.In 2005, Xu conjectured that $γ_s'(G)\le n-1$, where $n$ is the order of $G$. This conjecture has been proved for the two cases $v_{odd}(G)=0$ and $v_{even}(G)=0$, where $v_{odd}(G)$ (resp. $v_{even}(G)$) is the number of odd (resp. even) vertices in $G$. This article proves Xu's conjecture for $v_{even}(G)\in \{1, 2\}$. We also show that for any simple graph $G$ of order $n$, $γ_s'(G)\le n+v_{odd}(G)/2$ and $γ_s'(G)\le n-2+v_{even}(G)$ when $v_{even}(G)>0$, and thus $γ_s'(G)\le (4n-2)/3$. Our result improves the best current upper bound of $γ_s'(G)\le \lceil 3n/2\rceil$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源