论文标题

Smapgan:基于半监督的生成对抗网络的样式地图瓷砖生成方法

SMAPGAN: Generative Adversarial Network Based Semi-Supervised Styled Map Tiles Generating Method

论文作者

Chen, X., Chen, S., Xu, T., Yin, B., Mei, X., Peng, J., Li, H.

论文摘要

传统的在线地图图块(例如Google Map和Baidu地图)在矢量数据中呈现。从向量数据中及时更新在线地图图块,生成耗时是一个困难的任务。它是从遥感图像中及时生成地图图块的快捷方式,遥感图像可以及时获取,而无需向量数据。但是,这个任务曾经具有挑战性甚至不可能。受到基于生成对抗网络(GAN)的图像到图像翻译(IMG2IMG)技术的启发,我们提出了基于生成对手网络(SMAPGAN)模型的半监督生成样式的MAP图块,以直接从远程传感图像中生成样式的地图。在此模型中,我们设计了一种半监督的学习策略,以预先对富的未配对样品进行训练,并在现实中对有限的配对样品进行微调。我们还设计了图像梯度L1损失和图像梯度结构损失,以生成具有全球拓扑关系和对象的详细边缘曲线的样式地图瓷砖,这在制图中很重要。此外,我们提出了边缘结构相似性指数(ESSI)作为评估生成的地图图块和地面真相之间拓扑一致性的质量的指标。实验结果表明,Smapgan的表现优于最先进的(SOTA),根据平方误差,结构相似性指数和ESSI。此外,在人类的感知测试中,Smapgan赢得了与SOTA有关制图的视觉现实主义的更多认可。我们的工作表明,Smapgan可能是产生样式地图瓷砖的新范式。我们的SMAPGAN实施可从https://github.com/imcsq/smapgan获得。

Traditional online map tiles, widely used on the Internet such as Google Map and Baidu Map, are rendered from vector data. Timely updating online map tiles from vector data, of which the generating is time-consuming, is a difficult mission. It is a shortcut to generate map tiles in time from remote sensing images, which can be acquired timely without vector data. However, this mission used to be challenging or even impossible. Inspired by image-to-image translation (img2img) techniques based on generative adversarial networks (GAN), we proposed a semi-supervised Generation of styled map Tiles based on Generative Adversarial Network (SMAPGAN) model to generate styled map tiles directly from remote sensing images. In this model, we designed a semi-supervised learning strategy to pre-train SMAPGAN on rich unpaired samples and fine-tune it on limited paired samples in reality. We also designed image gradient L1 loss and image gradient structure loss to generate a styled map tile with global topological relationships and detailed edge curves of objects, which are important in cartography. Moreover, we proposed edge structural similarity index (ESSI) as a metric to evaluate the quality of topological consistency between generated map tiles and ground truths. Experimental results present that SMAPGAN outperforms state-of-the-art (SOTA) works according to mean squared error, structural similarity index, and ESSI. Also, SMAPGAN won more approval than SOTA in the human perceptual test on the visual realism of cartography. Our work shows that SMAPGAN is potentially a new paradigm to produce styled map tiles. Our implementation of the SMAPGAN is available at https://github.com/imcsq/SMAPGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源