论文标题

多视图光度立体声:用于空间变化的各向同性材料的强大解决方案和基准数据集

Multi-View Photometric Stereo: A Robust Solution and Benchmark Dataset for Spatially Varying Isotropic Materials

论文作者

Li, Min, Zhou, Zhenglong, Wu, Zhe, Shi, Boxin, Diao, Changyu, Tan, Ping

论文摘要

我们提出了一种使用多视光学立体声(MVP)技术捕获3D形状和空间变化反射率的方法,该技术适用于一般的各向同性材料。我们的算法适用于透视摄像机和附近的点光源。我们的数据捕获设置很简单,仅包括数码相机,一些LED灯和可选的自动转盘。从单个角度来看,我们使用一组光度立体声图像来识别与相机相同距离的表面点。我们从多个角度收集这些信息,并将其与结构 - 轻度结合,以获得完整3D形状的精确重建。通过同时推断出每个表面点的一组基础BRDF及其混合权重来捕获各向同性双向反射分布函数(BRDF)的空间变化。在实验中,我们使用两个不同的设置演示了我们的算法:用于最高精度的录音室设置和一个桌面设置,以实现最佳可用性。根据我们的实验,在录音室设置下,捕获的形状准确至0.5毫米,并且捕获的反射率的相对根平方误差(RMSE)为9%。我们还在新收集的基准数据集上定量评估了最先进的MVP,该数据集可公开启发未来的研究。

We present a method to capture both 3D shape and spatially varying reflectance with a multi-view photometric stereo (MVPS) technique that works for general isotropic materials. Our algorithm is suitable for perspective cameras and nearby point light sources. Our data capture setup is simple, which consists of only a digital camera, some LED lights, and an optional automatic turntable. From a single viewpoint, we use a set of photometric stereo images to identify surface points with the same distance to the camera. We collect this information from multiple viewpoints and combine it with structure-from-motion to obtain a precise reconstruction of the complete 3D shape. The spatially varying isotropic bidirectional reflectance distribution function (BRDF) is captured by simultaneously inferring a set of basis BRDFs and their mixing weights at each surface point. In experiments, we demonstrate our algorithm with two different setups: a studio setup for highest precision and a desktop setup for best usability. According to our experiments, under the studio setting, the captured shapes are accurate to 0.5 millimeters and the captured reflectance has a relative root-mean-square error (RMSE) of 9%. We also quantitatively evaluate state-of-the-art MVPS on a newly collected benchmark dataset, which is publicly available for inspiring future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源