论文标题
通过图神经网络的时间序列数据推断网络结构和动态
Inference for Network Structure and Dynamics from Time Series Data via Graph Neural Network
论文作者
论文摘要
各种背景的网络结构在社会,技术和生物系统中起着重要作用。但是,由于测量错误或私人保护问题,实际情况下可观察到的网络结构通常是不完整或不可用的。因此,推断完整的网络结构对于理解复杂的系统很有用。现有的研究尚未完全解决有关连接或节点的部分或没有信息来推断网络结构的问题。在本文中,我们通过使用网络动力学生成的时间序列数据来解决问题。我们将基于动态时间序列数据的网络推理问题视为最小化未来状态错误的错误,并提出了一种新型数据驱动的深度学习模型,称为Gumbel Graph Network(GGN),以解决两种网络推理问题:网络重建和网络完成。对于网络重建问题,GGN框架包括两个模块:动态学习者和网络生成器。对于网络完成问题,GGN添加了一个名为“状态学习者”的新模块,以推断网络的缺失部分。我们对离散和连续的时间序列数据进行了实验。实验表明,我们的方法可以在网络重建任务上重建多达100%的网络结构。尽管丢失了一些节点时,该模型还可以以高达90%的精度来推断结构的未知部分。随着缺失节点的分数增加,精度衰减。我们的框架可能具有广泛的应用领域,在该领域很难获得网络结构,并且时间序列数据很丰富。
Network structures in various backgrounds play important roles in social, technological, and biological systems. However, the observable network structures in real cases are often incomplete or unavailable due to measurement errors or private protection issues. Therefore, inferring the complete network structure is useful for understanding complex systems. The existing studies have not fully solved the problem of inferring network structure with partial or no information about connections or nodes. In this paper, we tackle the problem by utilizing time series data generated by network dynamics. We regard the network inference problem based on dynamical time series data as a problem of minimizing errors for predicting future states and proposed a novel data-driven deep learning model called Gumbel Graph Network (GGN) to solve the two kinds of network inference problems: Network Reconstruction and Network Completion. For the network reconstruction problem, the GGN framework includes two modules: the dynamics learner and the network generator. For the network completion problem, GGN adds a new module called the States Learner to infer missing parts of the network. We carried out experiments on discrete and continuous time series data. The experiments show that our method can reconstruct up to 100% network structure on the network reconstruction task. While the model can also infer the unknown parts of the structure with up to 90% accuracy when some nodes are missing. And the accuracy decays with the increase of the fractions of missing nodes. Our framework may have wide application areas where the network structure is hard to obtained and the time series data is rich.