论文标题
brillouin激光光原子钟
A Brillouin Laser Optical Atomic Clock
论文作者
论文摘要
在过去的十年中,光原子时钟超过了微波炉,现在具有以两个数量级或更多数量级的精度提高时间来测量时间的能力。这种表现的提高不仅令人信服,这不仅对于实现了新科学,例如地球的大地测量,寻找暗物质以及对基本物理常数可能长期变化的研究,而且还革命了现有技术,例如全球定位系统(GPS)。剩下的一个重大挑战是将这些光学时钟过渡到非实验室环境,这需要对原子参考和时钟激光器的坚固化和微型化以及它们的支撑激光器和电子设备。在这里,使用紧凑型刺激的布里渊散射(SBS)激光询问$^8 $$^8 $ sr $^+$ ion,我们演示了便携式光学原子时钟体系结构的有希望的组成部分。为了将SBS激光器的稳定性提高到适合时钟操作的水平,我们利用一种自我引用技术来补偿激光的温度漂移至170美元以内。我们的SBS光学时钟实现了$ 3.9 \ times 10^{ - 14} $的短期稳定性,$ 1 $ s ---比最先进的微波时钟的数量级改进。基于这项技术,使用便携式SBS时钟的未来GPS为距离测量提供了潜力,分辨率增加了100倍。
Over the last decade, optical atomic clocks have surpassed their microwave counterparts and now offer the ability to measure time with an increase in precision of two orders of magnitude or more. This performance increase is compelling not only for enabling new science, such as geodetic measurements of the earth, searches for dark matter, and investigations into possible long-term variations of fundamental physics constants but also for revolutionizing existing technology, such as the global positioning system (GPS). A significant remaining challenge is to transition these optical clocks to non-laboratory environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics. Here, using a compact stimulated Brillouin scattering (SBS) laser to interrogate a $^8$$^8$Sr$^+$ ion, we demonstrate a promising component of a portable optical atomic clock architecture. In order to bring the stability of the SBS laser to a level suitable for clock operation, we utilize a self-referencing technique to compensate for temperature drift of the laser to within $170$ nK. Our SBS optical clock achieves a short-term stability of $3.9 \times 10^{-14}$ at $1$ s---an order of magnitude improvement over state-of-the-art microwave clocks. Based on this technology, a future GPS employing portable SBS clocks offers the potential for distance measurements with a 100-fold increase in resolution.