论文标题

使用紧凑的电子鼻系统快速检测葡萄酒质量:乙酸的焦点阈值的应用

Wine quality rapid detection using a compact electronic nose system: application focused on spoilage thresholds by acetic acid

论文作者

Gamboa, Juan C. Rodriguez, E., Eva Susana Albarracin, da Silva, Adenilton J., Leite, Luciana, Ferreira, Tiago A. E.

论文摘要

对于葡萄酒行业来说,具有诸如电子鼻系统(电子鼻)之类的方法至关重要,以实时监测葡萄酒中乙酸的阈值,以防止其变质或确定其质量。在本文中,我们证明了基于薄膜半导体(SNO2)传感器的便携式和紧凑的自发电子鼻子,并采用了使用深层多层perceptron(MLP)神经网络进行培训,可以在常规的葡萄酒质量控制任务中对葡萄酒变质阈值进行早期发现。为了获得快速和在线检测,我们提出了一种重点是原始数据处理的上升窗口的方法,以找到具有最佳识别性能的传感器信号的早期部分。将我们的方法与电子鼻子中用于气体识别的常规方法进行了比较,该方法涉及特征提取和用于预处理数据的选择技术,并由支持向量机(SVM)分类器继承。结果证明,可以在气体注入点后的2.7秒内对三个葡萄酒变质水平进行分类,这意味着方法学的速度比我们实验性设置中常规方法获得的结果快63倍。

It is crucial for the wine industry to have methods like electronic nose systems (E-Noses) for real-time monitoring thresholds of acetic acid in wines, preventing its spoilage or determining its quality. In this paper, we prove that the portable and compact self-developed E-Nose, based on thin film semiconductor (SnO2) sensors and trained with an approach that uses deep Multilayer Perceptron (MLP) neural network, can perform early detection of wine spoilage thresholds in routine tasks of wine quality control. To obtain rapid and online detection, we propose a method of rising-window focused on raw data processing to find an early portion of the sensor signals with the best recognition performance. Our approach was compared with the conventional approach employed in E-Noses for gas recognition that involves feature extraction and selection techniques for preprocessing data, succeeded by a Support Vector Machine (SVM) classifier. The results evidence that is possible to classify three wine spoilage levels in 2.7 seconds after the gas injection point, implying in a methodology 63 times faster than the results obtained with the conventional approach in our experimental setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源