论文标题

sievenet:一个统一的基于图像的虚拟试验的统一框架

SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On

论文作者

Jandial, Surgan, Chopra, Ayush, Ayush, Kumar, Hemani, Mayur, Kumar, Abhijeet, Krishnamurthy, Balaji

论文摘要

基于图像的时尚虚拟试验最近引起了广泛的关注。该任务需要在目标模型图像上尝试服装项目。一个有效的框架由两个阶段组成:(1)翘曲(转换)固定布与目标模型的姿势和形状保持一致,以及(2)纹理传递模块以将扭曲的扭曲的try-On布集成到目标模型图像上。现有的方法在其尝试输出中遭受伪影和扭曲的影响。在这项工作中,我们介绍了Sievenet,这是一个基于图像的虚拟尝试的框架。首先,我们引入了一个多阶段的粗到1个扭曲网络,以更好地模拟细粒度的复杂性(同时改变固定布),并用一种​​新颖的知觉几何匹配损失来训练它。接下来,我们在改进纹理转移网络之前引入了一个固定的布料条件分割面膜。最后,我们还引入了一种训练纹理翻译网络的决斗三重态损失策略,该策略进一步提高了生成的尝试结果的质量。我们对拟议管道的每个组成部分进行了广泛的定性和定量评估,并针对当前的最新方法显示出显着的性能改善。

Image-based virtual try-on for fashion has gained considerable attention recently. The task requires trying on a clothing item on a target model image. An efficient framework for this is composed of two stages: (1) warping (transforming) the try-on cloth to align with the pose and shape of the target model, and (2) a texture transfer module to seamlessly integrate the warped try-on cloth onto the target model image. Existing methods suffer from artifacts and distortions in their try-on output. In this work, we present SieveNet, a framework for robust image-based virtual try-on. Firstly, we introduce a multi-stage coarse-to-fine warping network to better model fine-grained intricacies (while transforming the try-on cloth) and train it with a novel perceptual geometric matching loss. Next, we introduce a try-on cloth conditioned segmentation mask prior to improve the texture transfer network. Finally, we also introduce a dueling triplet loss strategy for training the texture translation network which further improves the quality of the generated try-on results. We present extensive qualitative and quantitative evaluations of each component of the proposed pipeline and show significant performance improvements against the current state-of-the-art method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源