论文标题
二维LIEB晶格及其扩展的障碍效应
Disorder effects in the two-dimensional Lieb lattice and its extensions
论文作者
论文摘要
我们研究了使用转移矩阵方法和有限尺寸缩放的二维LIEB晶格的定位特性及其在疾病存在下的扩展。我们发现Lieb晶格中的所有州及其扩展都以$ w \ geq 1 $的价格定位。确定了无序平面带和无序分散带之间的定位特性明显差异。我们的结果补充了清洁光子Lieb晶格的先前实验研究,并提供了有关其在疾病方面稳定性的信息。
We study the localization properties of the two-dimensional Lieb lattice and its extensions in the presence of disorder using transfer matrix method and finite-size scaling. We find that all states in the Lieb lattice and its extensions are localized for $W \geq 1$. Clear differences in the localization properties between disordered flat band and disordered dispersive bands are identified. Our results complement previous experimental studies of clean photonic Lieb lattices and provide information about their stability with respect to disorder.