论文标题
一种稀疏网格概率方案,用于融合电子中电子概率的近似值
A sparse-grid probabilistic scheme for approximation of the runaway probability of electrons in fusion tokamak simulation
论文作者
论文摘要
在磁破坏过程中产生的失控电子(RE)对等离子体核融合反应器的安全操作构成了重大威胁。理解RE动力学的一个关键方面是计算失控的概率,即相位空间中的电子在开处或之前是规定的时间。可以通过求解控制电子动力学的基础fokker-planck方程的伴随方程来获得这种概率。在这项工作中,我们提出了一种用于计算失控概率的稀疏网格概率方案。我们方法的关键要素是将伴随方程的解决方案表示为条件期望,以便离散差分运算符将其减少到一组积分的近似值。自适应稀疏网格插值用于近似从相空间到失控概率的地图。这项工作的主要新颖性是将稀疏网格方法集成到计算逃生概率的概率数值方案中,以及计算概率的演示。给出了两个数值示例,以说明所提出的方法可以实现$ \ MATHCAL {O}(ΔT)$收敛性,以及自适应改进策略可以有效地处理失控区域和非跑步区域之间的急剧过渡层。
Runaway electrons (RE) generated during magnetic disruptions present a major threat to the safe operation of plasma nuclear fusion reactors. A critical aspect of understanding RE dynamics is to calculate the runaway probability, i.e., the probability that an electron in the phase space will runaway on, or before, a prescribed time. Such probability can be obtained by solving the adjoint equation of the underlying Fokker-Planck equation that controls the electron dynamics. In this effort, we present a sparse-grid probabilistic scheme for computing the runaway probability. The key ingredient of our approach is to represent the solution of the adjoint equation as a conditional expectation, such that discretizing the differential operator reduces to the approximation of a set of integrals. Adaptive sparse grid interpolation is utilized to approximate the map from the phase space to the runaway probability. The main novelties of this effort are the integration of the sparse-grid method into the probabilistic numerical scheme for computing escape probability, as well as the demonstration in computing RE probabilities. Two numerical examples are given to illustrate that the proposed method can achieve $\mathcal{O}(Δt)$ convergence, as well as the adaptive refinement strategy can effectively handle the sharp transition layer between the runaway and non-runaway regions.