论文标题

通用阵列

Universal arrays

论文作者

Pavez-Signé, Matías, Quiroz, Daniel A., Sanhueza-Matamala, Nicolás

论文摘要

$ q $符号上的一个单词是来自尺寸$ q $的固定字母的一系列字母。对于整数$ k \ ge 1 $,我们说一个单词$ w $是$ k $ - 宇宙,如果给定长度$ k $的任意单词,可以通过从$ w $中删除条目来获得它。很容易看出,$ q $符号上的$ k $ - 上词的最小长度正好是$ qk $。我们证明,几乎每个大小$(1+o(1))C_QK $的单词是$ k $ - 宇宙,其中$ c_q $是一个明确的常数,其值约为$ q \ log q $。此外,我们表明,均匀选择的单词的$ k $ - 大学物业表现出鲜明的门槛。最后,通过扩展Alon的技术[几何和功能分析27(2017),第1期。 1,1--32],我们为这个问题的每个较高维度类似物提供渐近的紧密界限。

A word on $q$ symbols is a sequence of letters from a fixed alphabet of size $q$. For an integer $k\ge 1$, we say that a word $w$ is $k$-universal if, given an arbitrary word of length $k$, one can obtain it by removing entries from $w$. It is easily seen that the minimum length of a $k$-universal word on $q$ symbols is exactly $qk$. We prove that almost every word of size $(1+o(1))c_qk$ is $k$-universal with high probability, where $c_q$ is an explicit constant whose value is roughly $q\log q$. Moreover, we show that the $k$-universality property for uniformly chosen words exhibits a sharp threshold. Finally, by extending techniques of Alon [Geometric and Functional Analysis 27 (2017), no. 1, 1--32], we give asymptotically tight bounds for every higher dimensional analogue of this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源