论文标题

自适应方向引导结构张量总变化

Adaptive Direction-Guided Structure Tensor Total Variation

论文作者

Demircan-Tureyen, Ezgi, Kamasak, Mustafa E.

论文摘要

方向引导的结构张量总变化(DSTV)是一个最近提出的正则化项,旨在提高结构张量总变异(STV)的敏感性,以指向预定方向的变化。尽管在单向图像上获得了合理的结果,但DSTV模型不适用于现实世界的多方向图像。在这项研究中,我们建立了一个两阶段的框架,可适应DSTV。我们设计了STV的替代方案,该替代方案在空间变化的方向描述符(即方向和各向异性的剂量)的指导下编码本地社区内的一阶信息。为了估计这些描述符,我们提出了一个有效的预处理器,该预处理器根据结构张量捕获局部几何形状。通过广泛的实验,我们通过将所提出的方法与基于最新的分析的非固定模型进行比较,在恢复质量和计算效率方面,将定向信息参与STV的参与程度。

Direction-guided structure tensor total variation (DSTV) is a recently proposed regularization term that aims at increasing the sensitivity of the structure tensor total variation (STV) to the changes towards a predetermined direction. Despite of the plausible results obtained on the uni-directional images, the DSTV model is not applicable to the multi-directional images of real-world. In this study, we build a two-stage framework that brings adaptivity to DSTV. We design an alternative to STV, which encodes the first-order information within a local neighborhood under the guidance of spatially varying directional descriptors (i.e., orientation and the dose of anisotropy). In order to estimate those descriptors, we propose an efficient preprocessor that captures the local geometry based on the structure tensor. Through the extensive experiments, we demonstrate how beneficial the involvement of the directional information in STV is, by comparing the proposed method with the state-of-the-art analysis-based denoising models, both in terms of restoration quality and computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源