论文标题
一次性沟通的联合边缘学习:设计与收敛分析
One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning: Design and Convergence Analysis
论文作者
论文摘要
Federated Edge Learning(Feel)是使用Edge设备(例如智能手机和传感器)在边缘服务器上进行模型培训的流行框架,而不会损害其隐私。在感觉框架中,Edge设备会定期将高维随机梯度传输到Edge服务器,这些梯度被汇总并用于更新全局模型。当边缘设备共享相同的通信介质时,从设备到边缘服务器的多个访问通道(MAC)会引起通信瓶颈。为了克服这种瓶颈,最近已经提出了一种有效的宽带模拟传输方案,该方案通过无线介质的波形 - 纯度特性汇总了模拟调制梯度(或局部模型)的聚合。但是,假定的线性模拟调制使得很难在专门使用数字调制的现代无线系统中部署此技术。为了解决这个问题,我们在这项工作中提出了一种新颖的数字版本的宽带无线聚合,称为一位宽带数字聚合(OBDA)。新方案具有一位梯度量化,然后是边缘设备的数字正交幅度调制(QAM),在Edge Server上基于多数派代码的解码。我们对无线通道敌对行动(通道噪声,褪色和通道估计误差)对拟议感觉方案的收敛速率的影响进行了全面分析。分析表明,敌对行动通过将缩放因子和偏差项引入梯度规范来减慢学习过程的收敛性。但是,我们表明,随着参与设备的数量的增长,所有负面影响都消失了,但是每种类型的渠道敌意率都以不同的速度。
Federated edge learning (FEEL) is a popular framework for model training at an edge server using data distributed at edge devices (e.g., smart-phones and sensors) without compromising their privacy. In the FEEL framework, edge devices periodically transmit high-dimensional stochastic gradients to the edge server, where these gradients are aggregated and used to update a global model. When the edge devices share the same communication medium, the multiple access channel (MAC) from the devices to the edge server induces a communication bottleneck. To overcome this bottleneck, an efficient broadband analog transmission scheme has been recently proposed, featuring the aggregation of analog modulated gradients (or local models) via the waveform-superposition property of the wireless medium. However, the assumed linear analog modulation makes it difficult to deploy this technique in modern wireless systems that exclusively use digital modulation. To address this issue, we propose in this work a novel digital version of broadband over-the-air aggregation, called one-bit broadband digital aggregation (OBDA). The new scheme features one-bit gradient quantization followed by digital quadrature amplitude modulation (QAM) at edge devices and over-the-air majority-voting based decoding at edge server. We provide a comprehensive analysis of the effects of wireless channel hostilities (channel noise, fading, and channel estimation errors) on the convergence rate of the proposed FEEL scheme. The analysis shows that the hostilities slow down the convergence of the learning process by introducing a scaling factor and a bias term into the gradient norm. However, we show that all the negative effects vanish as the number of participating devices grows, but at a different rate for each type of channel hostility.