论文标题
最大程度的相对对数协同学和NAMBU结构
Relative Logarithmic Cohomology and Nambu Structures of Maximal Degree
论文作者
论文摘要
我们介绍了在最大程度的NAMBU结构(多矢量场)的局部分类结果,该函数的局部分类结果,在其退化性超表面的平滑点附近。结果取决于Brieskorn-Sebastiani定理的对数版本,该版本保证了相应的变形模块的有限和烦恼。这将分类问题的功能模量与对数形式的积分沿着Milnor纤维的消失循环的消失循环相关联,该功能限制了NAMBU结构的退化性超表现,在功能本身的MILNOR纤维内部。
We present local classification results for isolated singularities of functions with respect to a Nambu structure (multi-vector field) of maximal degree, in a neighbourhood of a smooth point of its degeneracy hypersurface. The results depend on a logarithmic version of the Brieskorn-Sebastiani theorem, which guarantees the finiteness and freeness of the corresponding deformation module. This relates the functional moduli of the classification problem with the integrals of logarithmic forms along the vanishing cycles of the complement of the Milnor fibers of the restriction of the function on the degeneracy hypersurface of the Nambu structure, inside the Milnor fibers of the function itself.