论文标题

$ c_ {a,b}^2 [0,t] $的cameron-storvick type定理

A Cameron-Storvick type theorem on $C_{a,b}^2[0,T]$ with applications

论文作者

Choi, Jae Gil, Skoug, David

论文摘要

本文的目的是建立一个非常通用的Cameron-Storvick定理,该定理涉及产品功能空间上功能的广义分析Feynman积分$ C_ {a,b}^2 [0,t] $。功能空间$ c_ {a,b} [0,t] $可以由与连续功能$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ c_ $诱发。为此,我们首先介绍$ \ mathcal f_ {a_1,a_2}^{\,\,\,\,\,a,b} $ $ c_ {a,b}^2 [0,t] $,这是Kallianpur和Bromley fresnelly fresnel fresnell fresnell fresnell fresnell fresnell fresnell fresnell fresnell fresnell f _ mathcal f _ _________________2 $。然后,我们继续在产品功能空间上建立Cameron-Storvick Type定理$ C_ {A,B}^2 [0,T] $。 最后,我们使用cameron-storvick type定理来获得几个有意义的结果和示例。

The purpose of this paper is to establish a very general Cameron-Storvick theorem involving the generalized analytic Feynman integral of functionals on the product function space $C_{a,b}^2[0,T]$. The function space $C_{a,b}[0,T]$ can be induced by the generalized Brownian motion process associated with continuous functions $a$ and $b$. To do this we first introduce the class $\mathcal F_{A_1,A_2}^{\,\,a,b}$ of functionals on $C_{a,b}^2[0,T]$ which is a generalization of the Kallianpur and Bromley Fresnel class $\mathcal F_{A_1,A_2}$. We then proceed to establish a Cameron-Storvick type theorem on the product function space $C_{a,b}^2[0,T]$. Finally we use our Cameron--Storvick type theorem to obtain several meaningful results and examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源