论文标题

支持稀疏关键估计的恢复和SUP-NORM收敛速率

Support recovery and sup-norm convergence rates for sparse pivotal estimation

论文作者

Massias, Mathurin, Bertrand, Quentin, Gramfort, Alexandre, Salmon, Joseph

论文摘要

在高维稀疏回归中,关键估计器是最佳正则参数独立于噪声水平的估计器。规范的关键估计器是平方根的套索,及其衍生物作为“非平滑 +非平滑平滑”优化问题。解决这些问题的现代技术包括平滑数据拟合术语,从而受益于快速有效的近端算法。在这项工作中,我们显示了非平滑和平滑,单个任务和多任务平方根套索估计器的最小值sup-norm收敛速率。多亏了我们的理论分析,我们提供了一些有关如何设置平滑体参数的指南,并在合成数据上说明了此类准则的兴趣。

In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level. The canonical pivotal estimator is the square-root Lasso, formulated along with its derivatives as a "non-smooth + non-smooth" optimization problem. Modern techniques to solve these include smoothing the datafitting term, to benefit from fast efficient proximal algorithms. In this work we show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators. Thanks to our theoretical analysis, we provide some guidelines on how to set the smoothing hyperparameter, and illustrate on synthetic data the interest of such guidelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源