论文标题
在极端温度和用第一原理模拟研究的压力下氧化镁
Magnesium Oxide at Extreme Temperatures and Pressures Studied with First-Principles Simulations
论文作者
论文摘要
我们结合了两种第一原理计算机模拟技术,即路径积分蒙特卡洛和密度功能理论分子动力学,以确定温暖密集物质状态下氧化镁状态的方程,密度从0.35到0.35到71〜g $ \,$ cm $ $ cm $^{-3} $^{ - 3} $和$ k $ k $ k $ 5,000^$ 5,5,000,000,000,000^$ k 5 \ 5 \ 〜5 \ 〜5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \〜\ 5.这些条件与巨型行星和恒星的内部以及冲击波压缩测量和惯性限制融合实验有关。我们研究MGO的电子结构和电离机理,这是密度和温度的函数。我们表明,镁和氧气的L壳轨道以高密度杂交。这导致L壳的逐渐电离,并随着密度和温度的升高。在这方面,MGO的行为与纯氧的行为不同,纯氧反映在MGO主冲击Hugoniot曲线的形状中。氧的曲线显示两个压缩最大值,而MGO的曲线仅显示一条。我们预测,最大压缩率为4.66,温度为6.73 $ \ times 10^7 $K。最后,我们研究了如何使用多个冲击和坡道波来覆盖大量的密度和温度。
We combine two first-principles computer simulation techniques, path integral Monte-Carlo and density functional theory molecular dynamics, to determine the equation of state of magnesium oxide in the regime of warm dense matter, with densities ranging from 0.35 to 71~g$\,$cm$^{-3}$ and temperatures from 10,000 K to $5\times10^8$~K. These conditions are relevant for the interiors of giant planets and stars as well as for shock wave compression measurements and inertial confinement fusion experiments. We study the electronic structure of MgO and the ionization mechanisms as a function of density and temperature. We show that the L-shell orbitals of magnesium and oxygen hybridize at high density. This results into a gradual ionization of the L-shell with increasing density and temperature. In this regard, MgO behaves differently from pure oxygen, which is reflected in the shape of the MgO principal shock Hugoniot curve. The curve of oxygen shows two compression maxima, while that of MgO shows only one. We predict a maximum compression ratio of 4.66 to occur for a temperature of 6.73 $\times 10^7$ K. Finally we study how multiple shocks and ramp waves can be used to cover a large range of densities and temperatures.