论文标题

材料中微观结构演变的部分微分方程的变分系统识别:稀疏和空间无关数据的推断

Variational system identification of the partial differential equations governing microstructure evolution in materials: Inference over sparse and spatially unrelated data

论文作者

Wang, Z., Huan, X., Garikipati, K.

论文摘要

模式形成是在包括材料物理学,发育生物学和生态学等不同领域中广泛观察到的现象。模式为基础的物理学是特定于机制的,并且由部分微分方程(PDE)编码。为了发现隐藏的物理,我们以前介绍了一种变异方法,可以在不同的忠诚度以嘈杂的数据(Applied Mechanics and Engineering中的计算机方法,353:201-216,2019)识别PDE系统。在这里,我们扩展了变异系统识别方法,以解决图像数据对材料物理学中微观结构的挑战。在时间间隔和空间域的组合中,PDE正式提出为初始值和边界值问题,这些空间域是固定或可以跟踪的。然而,在给定材料系统中,绝大多数用于不断发展的显微结构的显微镜技术在不同时间在不同时间瞬间没有任何关系的域上提供了模式演变的显微照片。时间分辨率很少捕获主导早期动态的最快时间尺度,并且噪声遍布。此外,可以从不同的物理标本中获得材料系统中同一现象进化的数据。在空间无关,稀疏和多源数据的背景下,我们利用了变异框架来做出加权功能的明智选择,并从动力学中识别PDE运算符。在稳定状态下的最小空间操作员集的简约推断产生了一致性条件。它是通过确认测试补充的,该测试为接受推断的操作员提供了急剧的条件。整个框架都在反映实验材料显微镜图像特征的合成数据上证明。

Pattern formation is a widely observed phenomenon in diverse fields including materials physics, developmental biology and ecology, among many others. The physics underlying the patterns is specific to the mechanisms, and is encoded by partial differential equations (PDEs). With the aim of discovering hidden physics, we have previously presented a variational approach to identifying such systems of PDEs in the face of noisy data at varying fidelities (Computer Methods in Applied Mechanics and Engineering, 353:201-216, 2019). Here, we extend our variational system identification methods to address the challenges presented by image data on microstructures in materials physics. PDEs are formally posed as initial and boundary value problems over combinations of time intervals and spatial domains whose evolution is either fixed or can be tracked. However, the vast majority of microscopy techniques for evolving microstructure in a given material system deliver micrographs of pattern evolution over domains that bear no relation with each other at different time instants. The temporal resolution can rarely capture the fastest time scales that dominate the early dynamics, and noise abounds. Furthermore, data for evolution of the same phenomenon in a material system may well be obtained from different physical specimens. Against this backdrop of spatially unrelated, sparse and multi-source data, we exploit the variational framework to make judicious choices of weighting functions and identify PDE operators from the dynamics. A consistency condition arises for parsimonious inference of a minimal set of the spatial operators at steady state. It is complemented by a confirmation test that provides a sharp condition for acceptance of the inferred operators. The entire framework is demonstrated on synthetic data that reflect the characteristics of the experimental material microscopy images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源