论文标题

关于单系统游戏中不可逆过程的优势

On the Advantage of Irreversible Processes in Single-System Games

论文作者

Coiteux-Roy, Xavier, Wolf, Stefan

论文摘要

CHSH无信号的游戏研究通过展示了经典策略,量子式策略和无信号策略的胜利率之间的差距。同样,CHSH*单系统游戏通过展示经典可逆策略,量子可逆策略和不可逆策略之间的差距来探讨不可逆转过程的优势。 CHSH*单系统游戏的擦除规则最高的不可逆转过程,但是这种``擦除优势''并不一定扩展到每个单个系统游戏:我们介绍了32游戏,其中可逆性无关紧要,只有古典和量子操作之间的区别很重要。我们通过修改Chsh*游戏来擦除其免疫力,同时保留其量子优势,从而展示我们的新见解。我们以反向程序结束:我们调整32场游戏以使其擦除可掩盖,并在此过程中删除其量子优势。带回家的消息是,当单一系统的大小太小以至于爱丽丝无法编码她的整个输入时,量子优势和擦除优势就可以独立发生。

The CHSH no-signalling game studies Bell nonlocality by showcasing a gap between the win rates of classical strategies, quantum-entangled strategies, and no-signalling strategies. Similarly, the CHSH* single-system game explores the advantage of irreversible processes by showcasing a gap between the win rates of classical reversible strategies, quantum reversible strategies, and irreversible strategies. The irreversible process of erasure rules supreme for the CHSH* single-system game, but this ``erasure advantage'' does not necessarily extend to every single-system game: We introduce the 32-Game, in which reversibility is irrelevant and only the distinction between classical and quantum operations matters. We showcase our new insight by modifying the CHSH* game to make it erasure-immune, while conserving its quantum advantage. We conclude by the reverse procedure: We tune the 32-Game to make it erasure-vulnerable, and erase its quantum advantage in the process. The take-home message is that, when the size of the single-system is too small for Alice to encode her whole input, quantum advantage and erasure advantage can happen independently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源