论文标题
局部可整合功能的跳跃集的可重新讨论性
Rectifiability of the jump set of locally integrable functions
论文作者
论文摘要
在本说明中,我们表明,对于$ \ mathbb {r}^n $上的每个可测量函数,爆炸存在且不常量的点集合为$(n-1)$ - 可重新合转。特别是,对于l^1_ {loc}中的每一个$ u \,\ mathbb {r}^n)$ jump set $ j_u $ is $(n-1)$ - 可纠正。
In this note we show that for every measurable function on $\mathbb{R}^n$ the set of points where the blowup exists and is not constant is $(n-1)$-rectifiable. In particular, for every $u\in L^1_{loc}(\mathbb{R}^n)$ the jump set $J_u$ is $(n-1)$-rectifiable.