论文标题

通过融合遥感,站,仿真和社会经济数据,基于深度学习的空气温度映射

Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data

论文作者

Shen, Huanfeng, Jiang, Yun, Li, Tongwen, Cheng, Qing, Zeng, Chao, Zhang, Liangpei

论文摘要

空气温度(TA)是控制和影响各种地球表面过程的必不可少的气候组成部分。在这项研究中,我们首次尝试采用深度学习进行TA映射,主要基于空间遥感和地面站观测值。考虑到TA在空间和时间上有很大差异,并且对许多因素敏感,因此基于多源数据融合的估计,还包括同化数据和社会经济数据。具体而言,使用5层结构的深信仰网络(DBN)来更好地捕获TA与不同预测变量之间的复杂和非线性关系。基本特征提取和重量参数优化的基本特征提取过程和微调过程的训练过程可确保对TA时空分布的稳健预测。 DBN模型的每日最大TA映射在中国实施0.01°。十倍的交叉验证结果表明,DBN模型以1.996°C的RMSE,1.539°C的RMSE实现了有希望的结果,在国家尺度上可实现0.986的RMSE。与多个线性回归(MLR),后传播神经网络(BPNN)和随机森林(RF)方法相比,DBN模型分别将MAE值降低了1.340°C,0.387°C和0.222°C。对空间分布和预测误差的时间趋势的进一步分析都验证了DBN在TA估计中的巨大潜力。

Air temperature (Ta) is an essential climatological component that controls and influences various earth surface processes. In this study, we make the first attempt to employ deep learning for Ta mapping mainly based on space remote sensing and ground station observations. Considering that Ta varies greatly in space and time and is sensitive to many factors, assimilation data and socioeconomic data are also included for a multi-source data fusion based estimation. Specifically, a 5-layers structured deep belief network (DBN) is employed to better capture the complicated and non-linear relationships between Ta and different predictor variables. Layer-wise pre-training process for essential features extraction and fine-tuning process for weight parameters optimization ensure the robust prediction of Ta spatio-temporal distribution. The DBN model was implemented for 0.01° daily maximum Ta mapping across China. The ten-fold cross-validation results indicate that the DBN model achieves promising results with the RMSE of 1.996°C, MAE of 1.539°C, and R of 0.986 at the national scale. Compared with multiple linear regression (MLR), back-propagation neural network (BPNN) and random forest (RF) method, the DBN model reduces the MAE values by 1.340°C, 0.387°C and 0.222°C, respectively. Further analysis on spatial distribution and temporal tendency of prediction errors both validate the great potentials of DBN in Ta estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源