论文标题
改进了半导体纳米线中RASHBA自旋轨道耦合的有效方程
Improved effective equation for the Rashba spin-orbit coupling in semiconductor nanowires
论文作者
论文摘要
半导体Rashba纳米线是准尺寸系统,其旋转轨道(SO)耦合是由于外部电场而导致的反转对称性损坏的。存在可以准确描述此效果的参数化多频道模型。但是,简化的单个条带模型非常需要研究最近的实验兴趣的几何形状,因为它们可以允许以降低的计算成本融合低维度和纳米线静电环境的影响。常用的传导带近似值,有效,对散装材料有效,极大地低估了锌 - 蓝色晶体结构中的SO耦合,并在应用于有限的横截面电线时高估了wurtzite的耦合,在这种情况下,限制效应结果证明起着重要作用。我们在这里证明了线性Rashba的有效方程式,因此半导体传导带的耦合可以重现更复杂的八波段K $ \ cdot $ P模型计算的行为。这是通过调整取决于纳米线晶体结构及其化学组成的单个有效参数来实现的。我们进一步将结果与从INAS和INSB纳米线进行的几个实验中从磁性测量中提取的RASHBA耦合进行了比较,发现了极好的一致性。这种方法可能与Rashba耦合起着主要作用的系统有关,例如在Spintronic设备或Majorana纳米线中发挥重要作用。
Semiconductor Rashba nanowires are quasi-one dimensional systems that have large spin-orbit (SO) coupling arising from a broken inversion symmetry due to an external electric field. There exist parametrized multiband models that can describe accurately this effect. However, simplified single band models are highly desirable to study geometries of recent experimental interest, since they may allow to incorporate the effects of the low dimensionality and the nanowire electrostatic environment at a reduced computational cost. Commonly used conduction band approximations, valid for bulk materials, greatly underestimate the SO coupling in Zinc-blende crystal structures and overestimate it for Wurtzite ones when applied to finite cross-section wires, where confinement effects turn out to play an important role. We demonstrate here that an effective equation for the linear Rashba SO coupling of the semiconductor conduction band can reproduce the behavior of more sophisticated eight-band k$\cdot$p model calculations. This is achieved by adjusting a single effective parameter that depends on the nanowire crystal structure and its chemical composition. We further compare our results to the Rashba coupling extracted from magnetoconductance measurements in several experiments on InAs and InSb nanowires, finding excellent agreement. This approach may be relevant in systems where Rashba coupling is known to play a major role, such as in spintronic devices or Majorana nanowires.