论文标题

高效的3D路线图数据交换车辆中的智能车辆

Efficient 3D Road Map Data Exchange for Intelligent Vehicles in Vehicular Fog Networks

论文作者

Ho, Ivan Wang-Hei, Chau, Sid Chi-Kin, Magsino, Elmer R., Jia, Kanghao

论文摘要

通过连接智能车辆以及路边的基础设施,可以大大扩展车辆的感知范围,并且可以有效地检测和避免盲点的隐藏物体。为了实现这一目标,必须实时将准确的路线图数据实时下载到这些智能车辆以进行导航和本地化目的。此外,必须通过道路网络中发生的动态变化来更新云。这些涉及高清3D路线图数据的传输,以准确表示物理环境。在这项工作中,我们在异质车辆网络中提出了雾计算体系结构下的解决方案,以优化智能车辆,路边基础设施以及区域数据库之间的数据交换。具体而言,通过利用索引编码技术来减少整体数据负载,可以实现3D路线图数据传播在路边雾节上的效率,而可以明智地管理网络资源并最大程度地减少运营成本的机会,而机会质计划可以进行异质传输的机会计划。此外,应用3D点云编码和哈希技术来加快网络中各种动态变化的更新。我们经验评估了基于实际的车辆移动痕迹以及城市街道的3D光检测和范围(LIDAR)数据的拟议解决方案。所提出的系统也在多动物测试床上实现,以进行实际评估。

Through connecting intelligent vehicles as well as the roadside infrastructure, the perception range of vehicles can be significantly extended, and hidden objects at blind spots can be efficiently detected and avoided. To realize this, accurate road map data must be downloaded in real time to these intelligent vehicles for navigation and localization purposes. Besides, the cloud must be updated with dynamic changes that happened in the road network. These involve the transmissions of high-definition 3D road map data for accurately representing the physical environments. In this work, we propose solutions under the fog computing architecture in a heterogeneous vehicular network to optimize data exchange among intelligent vehicles, the roadside infrastructure, as well as regional databases. Specifically, the efficiency of 3D road map data dissemination at roadside fog nodes is achieved by exploiting index coding techniques to reduce the overall data load, while opportunistic scheduling of heterogeneous transmissions can be done to judiciously manage network resources and minimize operating cost. In addition, 3D point cloud coding and hashing techniques are applied to expedite the updates of various dynamic changes in the network. We empirically evaluate the proposed solutions based on real-world mobility traces of vehicles and 3D LIght Detection And Ranging (LIDAR) data of city streets. The proposed system is also implemented in a multi-robotic testbed for practical evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源