论文标题
在标签图上$ C^*$ - 代数
On Labeled Graph $C^*$-algebras
论文作者
论文摘要
给定一个有向图的$ e $和一个标签$ \ MATHCAL {l} $,一个人通过取下标记的标签空间$(E,\ Mathcal {l},\ Mathcal {B})$构成标记的图形$ c^*$ - 代数,并构成了一个普遍生成的parties isalies isometies and opjitionions and Projections和Projections和Projections和Projections和Projections and Projections和Projections和Projections。在本文中,我们为标记的图形$ c^*$ - 代数的理想工作时,当该图中包含水槽时。使用我们构建的一些工具,我们计算$ c^*(e,\ mathcal {l},\ Mathcal {b})$当$ e $是有限的图表时。
Given a directed graph $E$ and a labeling $\mathcal{L}$, one forms the labeled graph $C^*$-algebra by taking a weakly left--resolving labeled space $(E, \mathcal{L}, \mathcal{B})$ and considering a universal generating family of partial isometries and projections. In this paper, we work on ideals for a labeled graph $C^*$-algebra when the graph contains sinks. Using some of the tools we build, we compute $C^*(E, \mathcal{L}, \mathcal{B})$ when $E$ is a finite graph.