论文标题

联合用户识别,通道估计和无赠款Noma的信号检测

Joint User Identification, Channel Estimation, and Signal Detection for Grant-Free NOMA

论文作者

Jiang, Shuchao, Yuan, Xiaojun, Wang, Xin, Xu, Chongbin, Yu, Wei

论文摘要

对于大规模的机器型通信,集中控制可能会导致高高的开销。无赠款的非正交多访问(NOMA)提供了可能的解决方案,但为有效的接收器设计带来了新的挑战。在本文中,我们开发了联合用户识别,通道估计和信号检测(JUICESD)算法。我们将整个检测方案划分为两个模块:插槽多用户检测(SMD)和联合信号和通道估计(CSCE)。 SMD旨在通过利用近似消息传递(AMP)算法来解除不同用户的传输,而CSCE旨在处理活动状态,通道系数和每个用户的传输信号的非线性耦合。为了解决CSCE内部和两个模块之间交换消息的确切计算的问题,这是由于相位歧义问题而变得复杂的,本文提出了一个旋转不变的高斯混合物(RIGM)模型,并开发了有效的JuicesD-rigm算法。 JUICESD-RIGM的性能接近JuicesD,复杂性要低得多。利用Rigm的特征,我们进一步分析了用状态演化技术的JUICESD-IGM的性能。数值结果表明,所提出的算法对现有替代方案实现了显着的性能改善,而派生的状态进化方法可以准确预测系统性能。

For massive machine-type communications, centralized control may incur a prohibitively high overhead. Grant-free non-orthogonal multiple access (NOMA) provides possible solutions, yet poses new challenges for efficient receiver design. In this paper, we develop a joint user identification, channel estimation, and signal detection (JUICESD) algorithm. We divide the whole detection scheme into two modules: slot-wise multi-user detection (SMD) and combined signal and channel estimation (CSCE). SMD is designed to decouple the transmissions of different users by leveraging the approximate message passing (AMP) algorithms, and CSCE is designed to deal with the nonlinear coupling of activity state, channel coefficient and transmit signal of each user separately. To address the problem that the exact calculation of the messages exchanged within CSCE and between the two modules is complicated due to phase ambiguity issues, this paper proposes a rotationally invariant Gaussian mixture (RIGM) model, and develops an efficient JUICESD-RIGM algorithm. JUICESD-RIGM achieves a performance close to JUICESD with a much lower complexity. Capitalizing on the feature of RIGM, we further analyze the performance of JUICESD-RIGM with state evolution techniques. Numerical results demonstrate that the proposed algorithms achieve a significant performance improvement over the existing alternatives, and the derived state evolution method predicts the system performance accurately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源