论文标题

简单表面奇点上点的希尔伯特(Hilbert

Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras

论文作者

Nakajima, Hiraku

论文摘要

我们证明了Arxiv中的Gyenge,Némethi和Szendrői的猜想:1512.06844,Arxiv:1512.06848提供了Eulers数量的Hilbert Shemes的生成函数的公式c^2/γ$,其中$γ$是$ \ mathrm {sl}(2)$的有限子组。我们从声称与$γ$ at $ζ= \ exp(\ frac {2πi} {2(h^\ vee+1)} $相关的量子仿射代数的标准模块的量子尺寸始终是$ 1 $,这是Kuniba [Kuniba [Kun93]的特殊情况。这里$ h^\ vee $是双coxeter号码。我们还证明了该索赔,该索赔以前不以$ e_7 $,$ e_8 $而闻名。

We prove the conjecture by Gyenge, Némethi and Szendrői in arXiv:1512.06844, arXiv:1512.06848 giving a formula of the generating function of Euler numbers of Hilbert schemes of points $\operatorname{Hilb}^n(\mathbb C^2/Γ)$ on a simple singularity $\mathbb C^2/Γ$, where $Γ$ is a finite subgroup of $\mathrm{SL}(2)$. We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with $Γ$ at $ζ= \exp(\frac{2πi}{2(h^\vee+1)})$ are always $1$, which is a special case of a conjecture by Kuniba [Kun93]. Here $h^\vee$ is the dual Coxeter number. We also prove the claim, which was not known for $E_7$, $E_8$ before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源