论文标题
在对称的多个Zeta-Star值和环状总和公式的变体上
On variants of symmetric multiple zeta-star values and the cyclic sum formula
论文作者
论文摘要
$ t $ ADIC对称的多个Zeta值被定义为Jarossay,已被研究为$ \ boldsymbol {p} $的真实类似物 - ADIC有限的多个Zeta值。在本文中,我们考虑了基于多个Zeta星值的几个正则化过程的Star类似物:谐波正则化,散句正则化和Kaneko-Yamamoto的类型正则化。 我们还提出了$ t $ - adiC对称的多个Zeta(-star)值的环状总和公式,这是$ \ boldsymbol {p} $ - ADIC有限的多重Zeta(-star)值的对应物。该证明使用我们的新关系,该关系将$ t $ ADIC对称的多个Zeta-Star值与多个Zeta-Star值连接到$ t $ ADIC对称的多个Zeta-Star值。
The $t$-adic symmetric multiple zeta values were defined Jarossay, which have been studied as a real analogue of $\boldsymbol{p}$-adic finite multiple zeta values. In this paper, we consider the star analogues based on several regularization processes of multiple zeta-star values: harmonic regularization, shuffle regularization, and Kaneko-Yamamoto's type regularization. We also present the cyclic sum formula for $t$-adic symmetric multiple zeta(-star) values, which is the counterpart of that for $\boldsymbol{p}$-adic finite multiple zeta(-star) values obtained by Kawasaki. The proof uses our new relationship that connects the cyclic sum formula for $t$-adic symmetric multiple zeta-star values and that for the multiple zeta-star values.