论文标题
$ t \ bar t $变形2D CFTS中的规范图和集成性
Canonical maps and integrability in $T\bar T$ deformed 2d CFTs
论文作者
论文摘要
我们研究了具有周期性边界条件的2D CFT的$ t \ bar t $变形。我们将这些系统与$ \ mathbb {r} \ times {s}^1 \ times {\ cal m} $上的字符串模型相关联,其中$ \ cal m $是2D CFT的目标空间。用相应的2D CFT和静态量表中识别光锥量表中的弦模型,它重现了其$ t \ bar t $变形系统。这将变形系统和最初的系统通过世界表坐标转换相关联,这成为汉密尔顿处理中时间依赖的规范图。变形的汉密尔顿人定义了弦乐能量,我们用最初2D CFT的手性汉密尔顿人表示。如果已知最初的2D CFT的光谱,则可以精确量化变形系统。还讨论了对非统一2D字段理论的概括。
We study $T\bar T$ deformations of 2d CFTs with periodic boundary conditions. We relate these systems to string models on $\mathbb{R}\times {S}^1\times{\cal M}$, where $\cal M$ is the target space of a 2d CFT. The string model in the light cone gauge is identified with the corresponding 2d CFT and in the static gauge it reproduces its $T\bar T$ deformed system. This relates the deformed system and the initial one by a worldsheet coordinate transformation, which becomes a time dependent canonical map in the Hamiltonian treatment. The deformed Hamiltonian defines the string energy and we express it in terms of the chiral Hamiltonians of the initial 2d CFT. This allows exact quantization of the deformed system, if the spectrum of the initial 2d CFT is known. The generalization to non-conformal 2d field theories is also discussed.