论文标题

用胶囊网络诊断野生的结直肠息肉

Diagnosing Colorectal Polyps in the Wild with Capsule Networks

论文作者

LaLonde, Rodney, Kandel, Pujan, Spampinato, Concetto, Wallace, Michael B., Bagci, Ulas

论文摘要

大肠癌主要由称为息肉的前体病变引起,仍然是全球与癌症相关死亡的主要原因之一。当前的临床标准需要对息肉的切除和组织病理学分析,这是由于测试的准确性和光活检方法的灵敏度基本低于推荐水平。在这项研究中,我们设计了一种新型的胶囊网络体系结构(D-CAP),以提高结直肠息肉的光学活检。我们提出的方法介绍了几种技术新颖性,包括一种新型的胶囊架构,其胶囊平均合并方法(CAP)方法可提高大规模图像分类的效率。我们证明,与先前的最先进的卷积神经网络(CNN)方法相比,结果改善了多达43%。这项工作为新的Mayo Polyp数据集提供了重要的基准,该数据集比以前的息肉研究更具挑战性和更大的数据集,其结果在所有可用类别,成像设备和模式中进行了分层,以及重点模式,以将未来方向推向AI-DREAD驱动的结直肠癌筛查系统。代码可在https://github.com/lalonderodney/d-caps上公开获取。

Colorectal cancer, largely arising from precursor lesions called polyps, remains one of the leading causes of cancer-related death worldwide. Current clinical standards require the resection and histopathological analysis of polyps due to test accuracy and sensitivity of optical biopsy methods falling substantially below recommended levels. In this study, we design a novel capsule network architecture (D-Caps) to improve the viability of optical biopsy of colorectal polyps. Our proposed method introduces several technical novelties including a novel capsule architecture with a capsule-average pooling (CAP) method to improve efficiency in large-scale image classification. We demonstrate improved results over the previous state-of-the-art convolutional neural network (CNN) approach by as much as 43%. This work provides an important benchmark on the new Mayo Polyp dataset, a significantly more challenging and larger dataset than previous polyp studies, with results stratified across all available categories, imaging devices and modalities, and focus modes to promote future direction into AI-driven colorectal cancer screening systems. Code is publicly available at https://github.com/lalonderodney/D-Caps .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源