论文标题
变形尺寸降低
Deformed dimensional reduction
论文作者
论文摘要
自从Behrend首次使用以来,Bryan和Szendrői在计算动机唐纳森 - 托马斯(DT)的计算中,$ \ mathbb {a} _ {\ mathbb {c}}^3 $的动机不变性,证明是动机和共识的重要工具。受到Cazzaniga,Morrison,Pym和Szendrői的猜想的启发在这些情况下,Cazzaniga-Morrison-pym-szendrői的版本。
Since its first use by Behrend, Bryan, and Szendrői in the computation of motivic Donaldson-Thomas (DT) invariants of $\mathbb{A}_{\mathbb{C}}^3$, dimensional reduction has proved to be an important tool in motivic and cohomological DT theory. Inspired by a conjecture of Cazzaniga, Morrison, Pym, and Szendrői on motivic DT invariants, work of Dobrovolska, Ginzburg, and Travkin on exponential sums, and work of Orlov and Hirano on equivalences of categories of singularities, we generalize the dimensional reduction theorem in motivic and cohomological DT theory and use it to prove versions of the Cazzaniga-Morrison-Pym-Szendrői conjecture in these settings.