论文标题

在任意量化输出约束下,二进制离散输入连续输出通道的最佳量化结构

Optimal quantizer structure for binary discrete input continuous output channels under an arbitrary quantized-output constraint

论文作者

Nguyen, Thuan, Nguyen, Thinh

论文摘要

给定具有二进制输入x =(x_1,x_2)的通道,其概率分布p_x =(p_ {x_1},p_ {x_2}),该频率被连续的噪声损坏,以产生连续的输出y \ in y =R。连续输出y回到最终离散输出z =(z_1,z_2,...,z_n),具有n \ leq 2,使得输入和量化输出i(x; z)之间的相互信息是最大化的,而量化量化output p_z =(p_ {z_1},p__1},p__2},z___2},z_______,p_______,p__,p__,p__,p__,p_______,考虑一个新的变量r_y = p_ {x_1} ϕ_1(y)/(p_ {x_1} ϕ_1(y)+p_1(y)+p_ {x_2} ϕ_2(y)),我们表明,最佳量化器具有新的可变量r_y的convex单元的结构。根据最佳量化器的凸单元性能,提出了一种快速算法以在多项式时间复杂性中找到全局最佳量化器。

Given a channel having binary input X = (x_1, x_2) having the probability distribution p_X = (p_{x_1}, p_{x_2}) that is corrupted by a continuous noise to produce a continuous output y \in Y = R. For a given conditional distribution p(y|x_1) = ϕ_1(y) and p(y|x_2) = ϕ_2(y), one wants to quantize the continuous output y back to the final discrete output Z = (z_1, z_2, ..., z_N) with N \leq 2 such that the mutual information between input and quantized-output I(X; Z) is maximized while the probability of the quantized-output p_Z = (p_{z_1}, p_{z_2}, ..., p_{z_N}) has to satisfy a certain constraint. Consider a new variable r_y=p_{x_1}ϕ_1(y)/ (p_{x_1}ϕ_1(y)+p_{x_2}ϕ_2(y)), we show that the optimal quantizer has a structure of convex cells in the new variable r_y. Based on the convex cells property of the optimal quantizers, a fast algorithm is proposed to find the global optimal quantizer in a polynomial time complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源