论文标题
系统卷积低密度发电机矩阵代码
Systematic Convolutional Low Density Generator Matrix Code
论文作者
论文摘要
在本文中,我们提出了一个系统的低密度发生器矩阵(LDGM)代码集合,该集合由Bernoulli过程定义。我们证明,在最大似然(ML)解码下,提出的集合可以以位错误率(BER)来实现二元输入输出对称(BIOS)无内存通道的能力。证明技术揭示了一种新的机制,不同于降低帧误差率(FER),即可以通过将光码字向量分配给光向量来降低BER。通过得出上限和下限来分析有限长度性能,这两者在高信噪比(SNR)区域中都被证明很紧。为了提高瀑布性能,我们通过随机分裂过程构建系统的卷积LDGM(SC-LDGM)代码。从没有复杂优化的情况下,可以实现任何有理代码速率的意义上,SC-LDGM代码很容易配置。作为通用构造,SC-LDGM代码的主要优点是它们在瀑布区域的近容量性能以及在误差地带区域的可预测性能,可以根据需要将未耦合的LDGM代码的密度降低到任何目标。还提供了数值结果以验证我们的分析。
In this paper, we propose a systematic low density generator matrix (LDGM) code ensemble, which is defined by the Bernoulli process. We prove that, under maximum likelihood (ML) decoding, the proposed ensemble can achieve the capacity of binary-input output symmetric (BIOS) memoryless channels in terms of bit error rate (BER). The proof technique reveals a new mechanism, different from lowering down frame error rate (FER), that the BER can be lowered down by assigning light codeword vectors to light information vectors. The finite length performance is analyzed by deriving an upper bound and a lower bound, both of which are shown to be tight in the high signal-to-noise ratio (SNR) region. To improve the waterfall performance, we construct the systematic convolutional LDGM (SC-LDGM) codes by a random splitting process. The SC-LDGM codes are easily configurable in the sense that any rational code rate can be realized without complex optimization. As a universal construction, the main advantage of the SC-LDGM codes is their near-capacity performance in the waterfall region and predictable performance in the error-floor region that can be lowered down to any target as required by increasing the density of the uncoupled LDGM codes. Numerical results are also provided to verify our analysis.