论文标题
改进在erds匹配猜想的顶点学位版本上的绑定
Improved Bound on Vertex Degree Version of Erdős Matching Conjecture
论文作者
论文摘要
对于$ k $ - 均匀的超图$ h $,令$δ_1(h)$表示$ h $的最低顶点度,$ν(h)$表示$ h $中最大匹配的大小。在本文中,我们表明,对于任何$ k \ geq 3 $和$β> 0 $,都有一个整数$ n_0(β,k)$,使得对于正整数$ n \ geq n_0 $和$ m \ leq(\ frac {k-b} $ n $ -vertex $ k $ -graph带有$Δ_1(h)> {{n-1} \ select {k-1}}}} - {{n-m} \ select {k-1}},$ then $ then $ n $ n $ n $ n $ n $ n $ n $ n(h)\ geq m $。 Bollobás,Daykin和Erdős(1976)的较早结果的范围$ n> 2k^3(M+1)$以及Huang and Zhao(2017)的早期结果改善了这一点。
For a $k$-uniform hypergraph $H$, let $δ_1(H)$ denote the minimum vertex degree of $H$, and $ν(H)$ denote the size of the largest matching in $H$. In this paper, we show that for any $k\geq 3$ and $β>0$, there exists an integer $n_0(β,k)$ such that for positive integers $n\geq n_0$ and $m\leq (\frac{k}{2(k-1)}-β)\frac{n}{k}$, if $H$ is an $n$-vertex $k$-graph with $δ_1(H)>{{n-1}\choose {k-1}}-{{n-m}\choose {k-1}},$ then $ν(H)\geq m$. This improves upon earlier results of Bollobás, Daykin and Erdős (1976) for the range $n> 2k^3(m+1)$ and Huang and Zhao (2017) for the range $n\geq 3k^2 m$.