论文标题

使用降解密度估计器学习生成模型

Learning Generative Models using Denoising Density Estimators

论文作者

Bigdeli, Siavash A., Lin, Geng, Portenier, Tiziano, Dunbar, L. Andrea, Zwicker, Matthias

论文摘要

学习概率模型可以估计一组样品的密度并从该密度产生样品,这是无监督的机器学习中的基本挑战之一。我们介绍了一个基于脱氧密度估计器(DDE)的新生成模型,该模型是由神经网络参数参数的标量函数,该函数经过有效训练以表示数据的内核密度估计器。利用DDES,我们的主要贡献是一种新的技术,可以通过直接最大程度地减少KL差异来获得生成模型。我们证明我们用于获得生成模型的算法可以收敛到正确的解决方案。我们的方法不需要特定的网络体系结构,因为在归一化流中,也不需要使用常规归一化流中的普通微分方程求解器。实验结果表明,在生成模型训练中,密度估计和竞争性能的大幅改善。

Learning probabilistic models that can estimate the density of a given set of samples, and generate samples from that density, is one of the fundamental challenges in unsupervised machine learning. We introduce a new generative model based on denoising density estimators (DDEs), which are scalar functions parameterized by neural networks, that are efficiently trained to represent kernel density estimators of the data. Leveraging DDEs, our main contribution is a novel technique to obtain generative models by minimizing the KL-divergence directly. We prove that our algorithm for obtaining generative models is guaranteed to converge to the correct solution. Our approach does not require specific network architecture as in normalizing flows, nor use ordinary differential equation solvers as in continuous normalizing flows. Experimental results demonstrate substantial improvement in density estimation and competitive performance in generative model training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源