论文标题
拓扑超导体中的配对障碍物
Pairing Obstructions in Topological Superconductors
论文作者
论文摘要
对拓扑绝缘体的现代理解是基于位置空间中的障碍物。在这种见识的驱动下,我们从位置空间的角度研究了拓扑超导体。对于一维超导体,我们表明单个库珀对的波函数在琐事阶段在琐碎阶段和多个方面的分离呈指数衰减。对于位置空间主要表示形式,我们表明拓扑阶段的特征是非零的主要极化,该极化捕获了对原子位置的不可移动和量化的分离。我们将结果应用于诊断二级超导阶段在两个维度上。我们的工作确立了将拓扑量子化学概括为超导性的优势。
The modern understanding of topological insulators is based on Wannier obstructions in position space. Motivated by this insight, we study topological superconductors from a position-space perspective. For a one-dimensional superconductor, we show that the wave function of an individual Cooper pair decays exponentially with separation in the trivial phase and polynomially in the topological phase. For the position-space Majorana representation, we show that the topological phase is characterized by a nonzero Majorana polarization, which captures an irremovable and quantized separation of Majorana Wannier centers from the atomic positions. We apply our results to diagnose second-order topological superconducting phases in two dimensions. Our work establishes a vantage point for the generalization of Topological Quantum Chemistry to superconductivity.