论文标题

非线性远距离离散时间拖网过程的光谱估计

Spectral estimation for non-linear long range dependent discrete time trawl processes

论文作者

Doukhan, Paul, Roueff, François, Rynkiewicz, Joseph

论文摘要

离散的时间拖网过程构成了由拖网序列(a j)j $ \参数为$ n的大型时间序列,并通过一系列独立且相同分布的(i.i.d.)副本定义了连续时间过程($γ$(t))t $ \ in $ r在$ r中称为种子过程。它们为建模线性或非线性远程依赖时间序列提供了一个通用框架。我们研究了远距离离散时间拖网过程的频谱估计,无论是点方还是宽带。种子过程和拖网序列的各种难度是双重的。首先,光谱密度可能采取不同的形式,通常包括平滑的添加校正项。其次,具有相似光谱密度的拖网过程可能表现出非常不同的统计行为。我们在非常一般的条件下证明了我们的估计量的一致性,我们证明了一类巨大的拖网过程使他们满意。这是通过引入可能具有独立关注的加权弱依赖指数来完成的。宽带光谱估计器包括长期内存参数的估计器。我们通过数值实验完成这项工作,以评估该估计值的有限样本量性能,以用于各个整数有价值的离散时间拖网过程。

Discrete time trawl processes constitute a large class of time series parameterized by a trawl sequence (a j) j$\in$N and defined though a sequence of independent and identically distributed (i.i.d.) copies of a continuous time process ($γ$(t)) t$\in$R called the seed process. They provide a general framework for modeling linear or non-linear long range dependent time series. We investigate the spectral estimation, either pointwise or broadband, of long range dependent discrete-time trawl processes. The difficulty arising from the variety of seed processes and of trawl sequences is twofold. First, the spectral density may take different forms, often including smooth additive correction terms. Second, trawl processes with similar spectral densities may exhibit very different statistical behaviors. We prove the consistency of our estimators under very general conditions and we show that a wide class of trawl processes satisfy them. This is done in particular by introducing a weighted weak dependence index that can be of independent interest. The broadband spectral estimator includes an estimator of the long memory parameter. We complete this work with numerical experiments to evaluate the finite sample size performance of this estimator for various integer valued discrete time trawl processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源