论文标题

从关系数据库中提取多个观点模型

Extracting Multiple Viewpoint Models from Relational Databases

论文作者

Berti, Alessandro, van der Aalst, Wil

论文摘要

流程挖掘项目的大量时间用于查找和理解数据源并提取所需的事件数据。结果,实际应用技术来发现,控制和预测业务流程的时间仅花费很少的时间。此外,当前的过程挖掘技术假设一个案例概念。但是,在真实生命的过程中,通常会交织不同的情况。例如,相同订单处理过程的事件可能是指客户,订单,订单线,交货和付款。因此,我们建议使用多个观点(MVP)模型,这些模型通过对象与事件相关联,并通过课程将活动相关联。所需的事件数据更接近现有的关系数据库。 MVP模型对该过程提供了整体视图,但也允许使用不同的观点提取经典事件日志。这种现有过程挖掘技术可用于每个观点,而无需新的数据提取和转换。我们提供一个工具链,允许从关系数据库发现MVP模型(用性能和频率信息注释)。此外,我们证明可以将经典过程挖掘技术应用于任何选定的观点。

Much time in process mining projects is spent on finding and understanding data sources and extracting the event data needed. As a result, only a fraction of time is spent actually applying techniques to discover, control and predict the business process. Moreover, current process mining techniques assume a single case notion. However, in reallife processes often different case notions are intertwined. For example, events of the same order handling process may refer to customers, orders, order lines, deliveries, and payments. Therefore, we propose to use Multiple Viewpoint (MVP) models that relate events through objects and that relate activities through classes. The required event data are much closer to existing relational databases. MVP models provide a holistic view on the process, but also allow for the extraction of classical event logs using different viewpoints. This way existing process mining techniques can be used for each viewpoint without the need for new data extractions and transformations. We provide a toolchain allowing for the discovery of MVP models (annotated with performance and frequency information) from relational databases. Moreover, we demonstrate that classical process mining techniques can be applied to any selected viewpoint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源