论文标题
在对称群体的L-帕克拉质Hecke代数上
On l-parabolic Hecke algebras of symmetric groups
论文作者
论文摘要
令$ h = h_q(n)$为n的对称群体的hecke代数,在任意特征的领域,其中q是$ k $中的原始l-the l-the。令$h_ρ$为$ h $的l- parabolic subalgebra。我们为$h_ρ$的非简单块的基本代数提供了基本的显式结构。我们还讨论了$h_ρ$模型的同源性能,特别是模块的品种存在,以及一些后果。
Let $H=H_q(n)$ be the Hecke algebra of the symmetric group of degree n, over a field of arbitrary characteristic, and where q is a primitive l-th root of unity in $K$. Let $H_ρ$ be an l-parabolic subalgebra of $H$. We give an elementary explicit construction for the basic algebra of a non-simple block of $H_ρ$. We also discuss homological properties of $H_ρ$-modules, in particular existence of varieties for modules, and some consequences.