论文标题

对一类完美匹配问题的顺序重要性采样算法的理论分析

Theoretical Analysis of Sequential Importance Sampling Algorithms for a Class of Perfect Matching Problems

论文作者

Tsao, Andy

论文摘要

本文分析了顺序重要性采样算法的性能,以估计两部分图中完美匹配的数量。得出准确的估计值所需的样品数量的精确界限。在此过程中,使用生成函数计算排列统计的力矩,而非标准限制定理是通过将完美的匹配作为时间均匀的马尔可夫链来得出的。

This paper analyzes the performance of sequential importance sampling algorithms for estimating the number of perfect matchings in bipartite graphs. Precise bounds on the number of samples required to yield an accurate estimate are derived. In doing so, moments of permutation statistics are computed using generating functions and nonstandard limit theorems are derived by expressing perfect matchings as a time-inhomogeneous Markov chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源