论文标题
在希尔伯特空间中通过广义CQ方法进行的强收敛定理
Strong Convergence Theorems by Generalized CQ Method in Hilbert Spaces
论文作者
论文摘要
最近,已广泛研究了CQ方法。但是,它主要用于修改Mann,Ishikawa和Halpern迭代,以获得强大的收敛性。在本文中,我们研究了CQ方法的特性,并提出了一个框架。基于此,我们获得了一系列强的收敛定理。其中一些是先前结果的扩展。另一方面,CQ方法,单调Q方法,单调C方法和单调CQ方法(过去单独给出)具有以下关系:CQ方法true $ \ rightarrow $ rightarrow $ honotone q方法true $ \ rightArow $ rightArow $ honotone c方法true $ \ leftrightRightRow $ leftrightArrow $ monotoneCQ方法true。
Recently, CQ method has been investigated extensively. However, it is mainly applied to modify Mann, Ishikawa and Halpern iterations to get strong convergence. In this paper, we study the properties of CQ method and proposed a framework. Based on that, we obtain a series of strong convergence theorems. Some of them are the extensions of previous results. On the other hand, CQ method, monotone Q method, monotone C method and monotone CQ method, used to be given separately, have the following relations: CQ method TRUE $\Rightarrow$ monotone Q method TRUE $\Rightarrow$ monotone C method TRUE $\Leftrightarrow$ monotone CQ method TRUE.