论文标题
PAROT:强大的深神经网络培训的实用框架
PaRoT: A Practical Framework for Robust Deep Neural Network Training
论文作者
论文摘要
深度神经网络(DNN)正在在自动驾驶汽车(AVS)等安全至关重要系统中找到重要的应用,在该系统中,对安全操作正确和稳健地感知环境是安全操作所必需的。由于其黑盒性质,提出了保证的独特挑战,DNN构成了对这些类型系统的监管接受的根本问题。强大的训练---培训以最大程度地减少对输入的小变化的过度敏感性 - 已成为应对这一挑战的一种有希望的技术。但是,现有的强大培训工具不需要使用或应用于现有代码库和模型:它们通常仅支持一小部分模型元素,并要求用户大量重写培训代码。在本文中,我们介绍了一个在流行的Tensorflow平台上开发的新型框架Parot,该框架大大降低了进入障碍。我们的框架使得可以在任意DNN上执行强大的培训,而无需重写模型。我们证明,我们的框架的性能与先前的艺术相媲美,并体现了其在现成的,训练有素的模型及其在现实世界中的工业应用程序上的测试功能的易用性:交通灯检测网络。
Deep Neural Networks (DNNs) are finding important applications in safety-critical systems such as Autonomous Vehicles (AVs), where perceiving the environment correctly and robustly is necessary for safe operation. Raising unique challenges for assurance due to their black-box nature, DNNs pose a fundamental problem for regulatory acceptance of these types of systems. Robust training --- training to minimize excessive sensitivity to small changes in input --- has emerged as one promising technique to address this challenge. However, existing robust training tools are inconvenient to use or apply to existing codebases and models: they typically only support a small subset of model elements and require users to extensively rewrite the training code. In this paper we introduce a novel framework, PaRoT, developed on the popular TensorFlow platform, that greatly reduces the barrier to entry. Our framework enables robust training to be performed on arbitrary DNNs without any rewrites to the model. We demonstrate that our framework's performance is comparable to prior art, and exemplify its ease of use on off-the-shelf, trained models and its testing capabilities on a real-world industrial application: a traffic light detection network.