论文标题

在Lerch的四边形Zeta功能的配方和零上

On Lerch's formula and zeros of the quadrilateral zeta function

论文作者

Nakamura, Takashi

论文摘要

令$ 0 <a \ le 1/2 $,然后将四边形zeta功能定义为$ 2q(s,a):=ζ(s,a) +ζ +ζ(s,1-a) + {\ rm {li}}} _ s(e^{2πia}) $ζ(s,a)$是hurwitz zeta函数,$ {\ rm {li}} _ s(e^{2πia})$是定期的zeta函数。 在本文中,我们表明存在一个唯一的实际数字$ a_0 \ in(0,1/2)$ in(0,1/2)$,因此$ q(σ,a_0)$在$σ= 1/2 $ n $σ\ in(0,1)$时具有唯一的双重零零,以$ q(a_0,1/2] $ $ q(a_0,1/2)$ q(0,1)$ quartal $ q($ q q) (0,1)$,对于任何$ a \ in(0,a_0)$,函数$ q(σ,a)$在(0,1)$中至少具有两个真实的零。 此外,我们证明$ q(s,a)$在{\ mathbb {q}}} $ a \ in {\ mathbb {q}}} \ cap(0,1/2)\ setMinus \ {1/6,1/6,1/6,1/4,1/3 \} $中时具有无限的许多复杂零。还显示了$ q(s,a)$的Lerch公式,Hadamard产品配方,Riemann-Von Mangoldt公式。

Let $0 < a \le 1/2$ and define the quadrilateral zeta function by $2Q(s,a) := ζ(s,a) + ζ(s,1-a) + {\rm{Li}}_s (e^{2πia}) + {\rm{Li}}_s(e^{2πi(1-a)})$, where $ζ(s,a)$ is the Hurwitz zeta function and ${\rm{Li}}_s (e^{2πia})$ is the periodic zeta function. In the present paper, we show that there exists a unique real number $a_0 \in (0,1/2)$ such that $Q(σ, a_0)$ has a unique double real zero at $σ= 1/2$ when $σ\in (0,1)$, for any $a \in (a_0,1/2]$, the function $Q(σ, a)$ has no zero in the open interval $σ\in (0,1)$ and for any $a \in (0,a_0)$, the function $Q(σ, a)$ has at least two real zeros in $σ\in (0,1)$. Moreover, we prove that $Q(s,a)$ has infinitely many complex zeros in the region of absolute convergence and the critical strip when $a \in {\mathbb{Q}} \cap (0,1/2) \setminus \{1/6, 1/4, 1/3\}$. The Lerch formula, Hadamard product formula, Riemann-von Mangoldt formula for $Q(s,a)$ are also shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源