论文标题
用于知识图的量子机学习算法
Quantum Machine Learning Algorithm for Knowledge Graphs
论文作者
论文摘要
语义知识图是用于知识表示和推理的大规模三重方向数据库。可以通过对知识图产生的张量表示形式进行建模和重建张量表示来推断隐式知识。但是,随着知识图的大小不断增长,经典建模变得越来越大量的计算资源密集型。本文研究了如何将量子资源大写以加速知识图的建模。特别是,我们提出了第一个量子机学习算法,用于推断张力数据,例如在知识图上。由于大多数张量问题都是NP-HARD,因此设计量子算法以支持该任务是一项挑战。我们通过做出合理的假设来简化问题,即知识图的张量表示可以通过其低级张量奇异值分解来近似,这通过我们的实验验证了。所提出的基于采样的量子算法实现了指数加速,其运行时在知识图张量的尺寸中具有多层次。
Semantic knowledge graphs are large-scale triple-oriented databases for knowledge representation and reasoning. Implicit knowledge can be inferred by modeling and reconstructing the tensor representations generated from knowledge graphs. However, as the sizes of knowledge graphs continue to grow, classical modeling becomes increasingly computational resource intensive. This paper investigates how quantum resources can be capitalized to accelerate the modeling of knowledge graphs. In particular, we propose the first quantum machine learning algorithm for making inference on tensorized data, e.g., on knowledge graphs. Since most tensor problems are NP-hard, it is challenging to devise quantum algorithms to support that task. We simplify the problem by making a plausible assumption that the tensor representation of a knowledge graph can be approximated by its low-rank tensor singular value decomposition, which is verified by our experiments. The proposed sampling-based quantum algorithm achieves exponential speedup with a runtime that is polylogarithmic in the dimension of knowledge graph tensor.