论文标题
跟踪岩浆从异质地幔源到喷发的演变
Tracking the evolution of magmas from heterogeneous mantle sources to eruption
论文作者
论文摘要
这项贡献回顾了使用实验研究和自然数据,回顾了源异质性,融化岩石反应和围内分化对跨海洋脊,板内环境和俯冲带的岩浆化学的影响。我们将辉石和橄榄岩的熔化行为及其对岩浆的相对贡献作为组成,地幔潜在温度和岩石圈厚度的相对贡献。我们还讨论了从异质性穿越橄榄岩地幔时从异质性产生的化学融化的命运。使用近60,000种天然主要元素组成,融合了火山岩,融合物和结晶累积,我们评估了尽可能大的全球数据集中的广泛的岩发生趋势。与以前的研究一致,中洋脊玄武岩(MORB)及其累积的主要元素化学因素倾向于对围内晶体内液体分离的一阶控制,而痕量元素研究强调了熔体摇滚反应的作用,强调了两者之间的脱钩。海洋岛玄武岩(OIB)的组成变异性比医疗质量更大,部分归因于地幔源中吡xenite比例的差异很大。然而,估计比例随着地幔的异质性组成,熔融模型和热结构的差异很大。对于ARC,我们重点介绍了当前对下板的作用到主要弧岩浆来源的看法,以及岩石圈作为岩浆化学过滤器以及大量弧库的储存库的作用。我们同时查看各种构造环境中的火山 +深层岩石数据库的方法强调了解解源信号与内室/岩石圈过程的挑战。
This contribution reviews the effects of source heterogeneities, melt-rock reactions and intracrustal differentiation on magma chemistry across mid-ocean ridges, intraplate settings and subduction zones using experimental studies and natural data. We compare melting behaviors of pyroxenites and peridotites and their relative contributions to magmas as functions of composition, mantle potential temperatures and lithospheric thickness. We also discuss the fate of chemically distinct melts derived from heterogeneities as they travel through a peridotitic mantle. Using nearly 60,000 natural major element compositions of volcanic rocks, melt inclusions, and crystalline cumulates, we assess broad petrogenetic trends in as large of a global dataset as possible. Consistent with previous studies, major element chemistry of mid-ocean ridge basalts (MORBs) and their cumulates favor a first-order control of intracrustal crystal-liquid segregation, while trace element studies emphasize the role of melt-rock reactions, highlighting the decoupling between the two. Ocean island basalts (OIB) show a larger compositional variability than MORB, partly attributed to large variations of pyroxenite proportions in the mantle source. However, the estimated proportions vary considerably with heterogeneity composition, melting model and thermal structure of the mantle. For arcs, we highlight current views on the role of the downgoing slab into the source of primary arc magmas, and the role of the overriding lithosphere as a magmatic chemical filter and as the repository of voluminous arc cumulates. Our approach of simultaneously looking at a large database of volcanic + deep crustal rocks across diverse tectonic settings underscores the challenge of deciphering the source signal versus intracrustal/lithospheric processes.