论文标题

隐私网络:多属性面部隐私的半逆转网络

PrivacyNet: Semi-Adversarial Networks for Multi-attribute Face Privacy

论文作者

Mirjalili, Vahid, Raschka, Sebastian, Ross, Arun

论文摘要

最近的研究已经确定了以高准确性从个人的面部形象中推论出诸如年龄,性别和种族等软生物特征属性的可能性。但是,这引起了隐私问题,尤其是在未经人同意的情况下将用于生物识别目的的面部图像用于属性分析时。为了解决这个问题,我们开发了一种通过图像扰动方法来面对图像的技术,以赋予软性生物识别隐私。图像扰动是使用基于GAN的半逆转网络(SAN)进行的,称为私密网络,该网络可修改输入面图像,以便可以由face Matcher用于匹配目的,但不能由属性分类器可靠地使用。此外,PrivacyNet允许一个人选择必须在输入面图像(例如年龄和种族)中混淆的特定属性,同时允许提取其他类型的属性(例如,性别)。使用多个面部匹配器,多个年龄/性别/种族分类器以及多个面部数据集进行了广泛的实验,证明了跨多个面部和属性分类器中提出的多属性隐私增强方法的普遍性。

Recent research has established the possibility of deducing soft-biometric attributes such as age, gender and race from an individual's face image with high accuracy. However, this raises privacy concerns, especially when face images collected for biometric recognition purposes are used for attribute analysis without the person's consent. To address this problem, we develop a technique for imparting soft biometric privacy to face images via an image perturbation methodology. The image perturbation is undertaken using a GAN-based Semi-Adversarial Network (SAN) - referred to as PrivacyNet - that modifies an input face image such that it can be used by a face matcher for matching purposes but cannot be reliably used by an attribute classifier. Further, PrivacyNet allows a person to choose specific attributes that have to be obfuscated in the input face images (e.g., age and race), while allowing for other types of attributes to be extracted (e.g., gender). Extensive experiments using multiple face matchers, multiple age/gender/race classifiers, and multiple face datasets demonstrate the generalizability of the proposed multi-attribute privacy enhancing method across multiple face and attribute classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源