论文标题

3D深度学习通过时间聚焦显微镜通过散射介质对刺的快速成像进行成像

3D Deep Learning Enables Fast Imaging of Spines through Scattering Media by Temporal Focusing Microscopy

论文作者

Wei, Zhun, Boivin, Josiah R., Xue, Yi, Chen, Xudong, So, Peter T. C., Nedivi, Elly, Wadduwage, Dushan N.

论文摘要

如今,通过散射组织进行体内成像的金标准是点扫描的两光子显微镜(PSTPM)。尤其是在神经科学中,PSTPM广泛用于大脑中的深度组织成像。但是,由于顺序扫描,PSTPM慢。另一方面,时间聚焦显微镜(TFM)会在时间上注意到飞秒脉冲激光光,同时保持宽场照明,因此更快。但是,由于使用摄像头检测器,TFM遭受了发射光子的散射。结果,TFM产生的空间分辨率和信噪比(SNR)的图像掩埋了小型结构(例如树突状刺)的荧光信号。在这项工作中,我们提出了一种数据驱动的深度学习方法,以改善TFM图像的分辨率和SNR。使用3D卷积神经网络(CNN),我们构建了从TFM到PSTPM模式的地图,以实现快速的TFM成像,同时通过散射介质维持高分辨率。我们证明了这种方法用于小鼠视觉皮层中锥体神经元上树突状刺的体内成像。我们表明,训练有素的网络快速输出高分辨率图像,这些图像恢复了先前埋在TFM图像中散射荧光中的生物学相关特征。结合TFM和拟议的3D卷积神经网络的体内成像比PSTPM快一到两个数量级,但保留了分析小荧光结构所需的高分辨率和SNR。提出的3D卷积深网也可能有益于改善许多速度需求深度组织成像应用(例如体内电压成像)的性能。

Today the gold standard for in vivo imaging through scattering tissue is the point-scanning two-photon microscope (PSTPM). Especially in neuroscience, PSTPM is widely used for deep-tissue imaging in the brain. However, due to sequential scanning, PSTPM is slow. Temporal focusing microscopy (TFM), on the other hand, focuses femtosecond pulsed laser light temporally, while keeping wide-field illumination, and is consequently much faster. However, due to the use of a camera detector, TFM suffers from the scattering of emission photons. As a result, TFM produces images of poor spatial resolution and signal-to-noise ratio (SNR), burying fluorescent signals from small structures such as dendritic spines. In this work, we present a data-driven deep learning approach to improve resolution and SNR of TFM images. Using a 3D convolutional neural network (CNN) we build a map from TFM to PSTPM modalities, to enable fast TFM imaging while maintaining high-resolution through scattering media. We demonstrate this approach for in vivo imaging of dendritic spines on pyramidal neurons in the mouse visual cortex. We show that our trained network rapidly outputs high-resolution images that recover biologically relevant features previously buried in the scattered fluorescence in the TFM images. In vivo imaging that combines TFM and the proposed 3D convolution neural network is one to two orders of magnitude faster than PSTPM but retains the high resolution and SNR necessary to analyze small fluorescent structures. The proposed 3D convolution deep network could also be potentially beneficial for improving the performance of many speed-demanding deep-tissue imaging applications such as in vivo voltage imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源